A flipped ion pair at the dynein–microtubule interface is critical for dynein motility and ATPase activation

نویسندگان

  • Seiichi Uchimura
  • Takashi Fujii
  • Hiroko Takazaki
  • Rie Ayukawa
  • Yosuke Nishikawa
  • Itsushi Minoura
  • You Hachikubo
  • Genji Kurisu
  • Kazuo Sutoh
  • Takahide Kon
  • Keiichi Namba
  • Etsuko Muto
چکیده

Dynein is a motor protein that moves on microtubules (MTs) using the energy of adenosine triphosphate (ATP) hydrolysis. To understand its motility mechanism, it is crucial to know how the signal of MT binding is transmitted to the ATPase domain to enhance ATP hydrolysis. However, the molecular basis of signal transmission at the dynein-MT interface remains unclear. Scanning mutagenesis of tubulin identified two residues in α-tubulin, R403 and E416, that are critical for ATPase activation and directional movement of dynein. Electron cryomicroscopy and biochemical analyses revealed that these residues form salt bridges with the residues in the dynein MT-binding domain (MTBD) that work in concert to induce registry change in the stalk coiled coil and activate the ATPase. The R403-E3390 salt bridge functions as a switch for this mechanism because of its reversed charge relative to other residues at the interface. This study unveils the structural basis for coupling between MT binding and ATPase activation and implicates the MTBD in the control of directional movement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-14: The Effects of Depression on Reduced Sperm Motility in Male Rats

Background: Infertility is a problem for 15 to 30% couples. Male infertility may be a result of insufficient number of sperms and poor motility. Spermatozoon consists of a head,midpiece and tail. The long tail consist micro-tubules that from part of the propulsion system of the spermatozoon. Motility of sperm is the result of relation between ATP,micro-tubules and dynein. Depression is one of t...

متن کامل

Two activators of microtubule-based vesicle transport

Cytoplasmic dynein purified by nucleotide dependent microtubule affinity has significant minus end-directed vesicle motor activity that decreases with each further purification step. Highly purified dynein causes membrane vesicles to bind but not move on microtubules. We exploited these observations to develop an assay for factors that, in combination with dynein, would permit minus end-directe...

متن کامل

Regulation of flagellar dynein by calcium and a role for an axonemal calmodulin and calmodulin-dependent kinase.

Ciliary and flagellar motility is regulated by changes in intraflagellar calcium. However, the molecular mechanism by which calcium controls motility is unknown. We tested the hypothesis that calcium regulates motility by controlling dynein-driven microtubule sliding and that the central pair and radial spokes are involved in this regulation. We isolated axonemes from Chlamydomonas mutants and ...

متن کامل

Regulation of flagellar dynein by an axonemal type-1 phosphatase in Chlamydomonas.

Physiological studies have demonstrated that flagellar radial spokes regulate inner arm dynein activity in Chlamydomonas and that an axonemal cAMP-dependent kinase inhibits dynein activity in radial spoke defective axonemes. These studies also suggested that an axonemal protein phosphatase is required for activation of flagellar dynein. We tested whether inhibitors of protein phosphatases would...

متن کامل

Regulation of Flagellar Dynein by Phosphorylation of a 138-kD Inner Arm Dynein Intermediate Chain

One of the challenges in understanding ciliary and flagellar motility is determining the mechanisms that locally regulate dynein-driven microtubule sliding. Our recent studies demonstrated that microtubule sliding, in Chlamydomonas flagella, is regulated by phosphorylation. However, the regulatory proteins remain unknown. Here we identify the 138-kD intermediate chain of inner arm dynein I1 as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 208  شماره 

صفحات  -

تاریخ انتشار 2015